T-Cell Therapy for HIV: Genetic Engineering of Enhanced Function and HIV Resistance

Bruce Levine, Ph.D. Division of Transfusion Medicine Department of Pathology and Laboratory Medicine University of Pennsylvania

Conflict of Interest Statement

- Declaration of financial interest due to intellectual property and patents in the field of cell and gene therapy.
- Consultant for GE Healthcare and Intrexon; SAB for Brammer Bio and Incysus
- Conflict of interest is managed in accordance with University of Pennsylvania policy and oversight

Background and Hypothesis

- The development of more than two dozen antiretroviral therapies to combat HIV has resulted in a dramatic decrease in morbidity and mortality associated with AIDS. But ...
- Significant costs of a lifetime of antiviral drug chemotherapy.
- Drug access and compliance issues have contributed to an increase in drug-resistant viral strains
- Hypothesis: Select, re-engineer HSC or expand T cells ex vivo outside of HIV milieu and re-infuse to prevent disease progression and enhance immune function

Multiple Points in HIV Lifecycle for Intervention by Gene Therapy

Table 1. Clinical Trials of Gene-modified Cells in HIV Infection.							
Strategy*	Target	Mechanism	Cell Type	Gene Delivery Mechanism	Clinical Trial Identifier	Reference (if published)	
Viral Factors							
	HIV-1 env protein	Fusion inhibitor peptide (C46)	Autologous CD4+ T cells	Retroviral vector		Van Lunzen et al., 2007	
	HIV-1 env mRNA	Antisense RNA	Autologous CD4+ T cells	Conditionally replicating lentiviral vector	NCT00295477	Levine <i>et al.</i> , 2006; Tebas <i>et al.</i> , 2013	
Provirus (4, 5)	HIV-1 U5 and pol mRNA	Ribozyme	Autologous CD4+ T cells	Retroviral vector		Wong-Staal et al., 1998	
RNA tran- scription (6)	HIV-1 tat-vpr mRNA	Ribozyme	Autologous CD34+ HSCs	Retroviral vector	NCT00074997	Amado <i>et al.</i> , 1999; MacPherson <i>et al.</i> , 2005; Mitsuyasu <i>et al.</i> , 2009; Amado <i>et al.</i> , 2004; Cooper <i>et al.</i> , 1999	
RNA nuclear export (7)	HIV-1 Rev protein	RNA decoy	Autologous CD34+ HSCs	Retroviral vector		Kohn et al., 1999	
			Transdominant mutant protein	Allogeneic CD34+ HSCs	Retroviral-based vector		Kang et al., 2002
			Autologous T cells	Plasmid or retro- viral-based vector		Woffendin <i>et al.</i> , 1996; Ranga <i>et al.</i> , 1998	
	HIV-1 TAR and/or Rev	Antisense RNA	Lymphocytes from uninfect- ed identical twin donor	Retroviral vector		Morgan et al., 2005	
RNA stability (8)	HIV-1 MazF	Endoribonu- clease	Autologous CD4+ T cells	Retroviral vector	NCT01787994		

Discovery Med. 2016 Apr:21(116):283

Table 1. Clinical Trials of Gene-modified Cells in HIV Infection.							
Strategy*	Target	Mechanism	Cell Type	Gene Delivery Mechanism	Clinical Trial Identifier	Reference (if published)	
Host Factors	Host Factors						
Surface targets and viral entry (1)	Human CCR5	ZFN	Autologous CD4+ T cells	Adenoviral vector	NCT02388594 NCT01252641 NCT01044654 NCT01543152	Tebas et al., 2014; Maier et al., 2013	
	Human CCR5	ZFN	Autologous CD34+ HSCs	mRNA electropo- ration	NCT02500849		
Immune Respo	Immune Response						
TCR trans- genic T cells (10)	SL9 epitope (HIV-1 Gag)	Enhanced TCR	Autologous T cells	Lentiviral vector	NCT00991224		
Chimeric anti- gen receptor (CAR) T cells (11)	CD4ζ chain	CAR-modified, HIV-specific T cells	Autologous CD4+ and CD8+ T cells	Retroviral vector		Mitsuyasu <i>et al.</i> , 2000; Deeks <i>et al.</i> , 2002	

Discovery Med. 2016 Apr:21(116):283

Editing the Genome to Confer HIV Resistance

Why Target CCR5 in HIV?

- HIV (R5 virus) targets CD4 T-cells by binding to CCR5, one of the major co-receptors for HIV entry
- CCR5 delta-32 mutation produces a nonfunctional protein
 - Homozygotes are resistant to HIV infection
 - Heterozygotes have slower disease progression

What are Zinc Finger Proteins? -specific DNA binding proteins, e.g transcription factors and other regulatory proteins

Paveltich and Pabo. Science 252:809 (1991)

Combinatorial Strategy with ZFNs To Achieve Genome Specific Targeting

Porteus, Nat Biotech 2005

Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

 To disrupt CCR5 and prevent HIV entry, ZFN pairs were targeted to the region upstream of where the ∆32 mutation occurs

ZFN-Mediated Targeted Gene Repair or Disruption

Activated T Cell Therapy for Infection or Malignancy 10 Day Ex Vivo Process

Bead Based in vitro T Cell Culture System

J Immunol 1997; 159: 5921 Science 1997; 276: 273 Immunol. Rev. 1997; 160: 43 Mol. Ther. 2004; 9; 902 Exp. Opin. Biol. Ther. 2008; 8: 475

Polyclonal Replicative Potential of Adult CD4 T Cells In Vitro

In Vivo Selection of CCR5-ZFN Modified Cells in NOD/SCID IL-2Rγ^{null} Mice

Primary CD4+ T Cells Isolated from Spleen Day 40 after HIV Challenge

High Definition T Cell receptor Repertoire Following CCR5 ZFN gene disruption

- No change compared to unmodified cultures
- Karyotyping also showed no differences
- Extensive animal studies show no increase in adverse events/deaths

Human Gene Therapy 24:245–258 (March 2013)

Ex Vivo CCR5 Genetic Modification of CD4⁺ T-cells Via Zinc Finger Nucleases in HIV+ Pts

Phase I Study Designs: SB728T = CCR5-ZFN Modified T Cells (Enriched CD4+)

Penn / Jacobi (NCT00842634)

- Open label, single dose study
- Study population: 3 cohorts
 - 1. MDR, virologic failure
 - 2. Aviremic, CD4> 450 (N=6)
 - 3. Aviremic, CD4< 500 (N=6)
- Optional STI beginning 1 month post infusion (cohort 2)
- Single infusion of 0.5 1.0 x 10¹⁰ CCR5- modified cells

Endpoints

Feasibility, Safety and Tolerability Change in CD4 count, CD4/CD8 ratio, proviral DNA Persistence of ZFN CCR5 modified T-cells

Quest Clin. Res. / UCLA* (NCT01044654)

- Open label, single dose study
- Study population All subjects on HAART

Increased CD4 Counts in Peripheral Blood after CCR5-ZFN CD4+ T Cell Infusion

CCR5-Modified T Cell Persistence in Peripheral Blood

CCR5-Modified T Cells Traffic to Rectal Mucosa

 R5 gene disruption levels in rectal mucosal CD4s qualitatively tracks with the disruption levels in peripheral blood CD4s

Unexpected Finding: HIV-RNA Decreases During STI in Immune Responders

CD4 Count Decay: Unmodified vs Gene-Edited T Cells

CCR5 modified CD4 T cell Infusions in HIV

- Safe and well-tolerated
- Durable increases in total CD4 T cells, normalization of CD4:CD8 ratio.
- Engraft, expand, and persist (>1 yr) in circulation
- CCR5-modified CD4 T cells detected in gut mucosa, demonstrating homing and persistence
- Delay/decrease in viral setpoint during drug treatment interruption in a subset of study subjects

CCR5 modified CD4 T cell Infusions in HIV Next Steps

- Increase CCR5 ZFN-modified T cell engraftment with Cytoxan
- Demonstrate dose effect by enrolling ∆32 heterozygotes
- CXCR4 ZFN-modified T cells
- Delivery of ZFN by electroporation of RNA

Molecular Therapy Methods & Clinical Development

Volume 3, 2016, Article 16007

Article

Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS

Christopher W. Peterson^a, Kevin G. Haworth^a, Bryan P. Burke^b, Patricia Polacino^c, Krystin K. Norman^a, Jennifer E. Adair^a, Shiu-Lok Hu^{c, d}, Jeffrey S. Bartlett^b, Geoff P. Symonds^b, Hans-Peter Kiem^{a, e,} [№]

- Investigational agent mC46 (derived from C-terminal hydrophobic alpha helix region of gp41) inhibits conformational changes required for virus fusion
- mC46 and a shRNA specific to human CCR5
- Cal-1 transduction and autologous transplantation of hematopoietic stem cells
- long-term, multilineage engraftment in blood and GI tract
- Positive selection for gene-marked cells is observed in blood and tissues following SHIV challenge

Enrichment of mC46 and CCR5 shRNA modified cells following SHIV Challenge

Peterson et al. Mol Ther Methods Clin Dev. 2016 Feb 24;3:16007

🔓 OPEN ACCESS 🛛 🏂 PEER-REVIEWED

RESEARCHARTICLE

Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus

George J. Leslie , Jianbin Wang , Max W. Richardson , Beth S. Haggarty, Kevin L. Hua, Jennifer Duong, Anthony J. Secreto, Andrea P. O. Jordon, Josephine Romano, Kritika E. Kumar, Joshua J. DeClercq, Philip D. Gregory, Carl H. June, [...], James A. Hoxie [view all]

Published: November 17, 2016 • https://doi.org/10.1371/journal.ppat.1005983

- HIV-1 entry can be inhibited by soluble peptides from gp41 heptad repeat-2 (HR2) domain
- These peptides can be conjugated to anchoring molecules and over-expressed on the cell surface
- C34-conjugated coreceptors CCR5 or CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates)

Inhibiting HIV Entry with C34 Peptide Conjugated to a Chemokine Receptor (CXCR4)

Inhibiting HIV Entry with C34 Peptide Conjugated to a Chemokine Receptor

657 - Evolution of HIV-1 Resistance to the Fusion Inhibitor C34-CXCR4 and Potential Fitness Costs in Consideration of a Phase 1 Clinical Trial

George J. Leslie¹, Beth Haggarty¹, Josephine Romano¹, Andrea P. O. Jordon¹, Jianbin Wang², Max W. Richardson³, James L. Riley³, Michael C. Holmes², Pablo Tebas¹, James Hoxie¹

Autologous CD4 T-Cells Modified with Lentiviral Vector Expressing an HR2, C34-peptide conjugated to the CXCR4 N-terminus in HIV-infected Subjects

- Study Design
 - Single cohort
 - Open-label pilot study
 - Safety and tolerability
 - Single infusion of autologous CD4+ T-cells genetically modified with an HR2, C34-peptide conjugated to the CXCR4 N-terminus using a lentiviral vector in HIV-infected subjects

• Investigational Objectives

- Safety and feasibility
- Cell engraftment and persistence
- Cell trafficking from blood to other sites
- Expansion/extended persistence when ARV drugs are discontinued
- HIV-1 rebound level when drugs are stopped
- Will resistant virus emerge?
- Will new anti-viral immune responses be generated?

Nature Medicine **15**, 285 - 292 (2009) Published online: 15 February 2009 doi:10.1038/nm.1932

Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34⁺ cells

Ronald T Mitsuyasu¹, Thomas C Merigan², Andrew Carr³, Jerome A Zack⁴, Mark A Winters², Cassy Workman⁵, Mark Bloch⁶, Jacob Lalezari⁷, Stephen Becker⁸, Lorna Thornton⁸, Bisher Akil⁹, Homayoon Khanlou¹⁰, Robert Finlayson¹¹, Robert McFarlane¹², Don E Smith¹³, Roger Garsia¹⁴, David Ma³, Matthew Law¹⁵, John M Murray^{15,16}, Christof von Kalle^{17,18}, Julie A Ely¹⁹, Sharon M Patino¹⁹, Alison E Knop¹⁹, Philip Wong¹⁹, Alison V Todd¹⁹, Margaret Haughton¹⁹, Caroline Fuery¹⁹, Janet L Macpherson¹⁹, Geoff P Symonds¹⁹, Louise A Evans¹⁹, Susan M Pond¹⁹ & David A Cooper^{3,15}

- First randomized, double-blind, placebo-controlled, phase 2 cell-delivered gene transfer clinical trial
- 74 HIV-1–infected adults received a *tat-vpr*–specific anti-HIV ribozyme (OZ1) or placebo in autologous CD34⁺ hematopoietic progenitor cells
- No statistically significant difference in viral load between OZ1 and placebo group at primary end point
- But time-weighted areas under the curve significantly lower, CD4⁺lymphocyte counts higher in OZ1 group

Quantification of the mean viral load from the analytic treatment interruption beginning at week 40

RESEARCH ARTICLE | GENE THERAPY

RNA-Based Gene Therapy for HIV with Lentiviral Vector–Modified CD34⁺ Cells in Patients Undergoing Transplantation for AIDS-Related Lymphoma

David L. DiGiusto^{1,*}, Amrita Krishnan^{1,*}, Lijing Li¹, Haitang Li², Shirley Li³, Anitha Rao¹, Shu Mi⁴, Priscilla Yam³, Sherri Stinson⁵, Michael Kalos⁶, Joseph Alvarnas¹, Simon F. Lacey⁴, Jiing-Kuan Yee³, Mingjie Li⁷, Larry Couture^{3,8}, David Hsu⁸, Stephen J. Forman¹, John J. Rossi^{2,†} and John A. Zaia³

¹Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.

²Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA.

³Department of Virology, City of Hope, Duarte, CA 91010, USA.

⁴Clinical Immunobiology Correlative Studies Laboratory, City of Hope, Duarte, CA 91010, USA.

⁵General Clinical Research Center, City of Hope, Duarte, CA 91010, USA.

⁶Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.

⁷Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.

⁸Center for Applied Technology Development, City of Hope, Duarte, CA 91010, USA.

[†]To whom correspondence should be addressed. E-mail: jrossi@coh.org

+ See all authors and affiliations

Science Translational Medicine 16 Jun 2010: Vol. 2, Issue 36, pp. 36ra43 DOI: 10.1126/scitransImed.3000931

Science Translational Medicine

(CD34+) hematopoietic progenitor cells expressing three RNA-based anti-HIV moieties (tat/rev short hairpin RNA, TAR decoy, and CCR5 ribozyme). In vitro analysis of these gene-modified cells showed no differences in their hematopoietic potential compared with nontransduced cells. In vitro estimates of successful expression of the anti-HIV moieties were initially as high as 22% but declined to ~1% over 4 weeks of culture. Ethical study design required that patients be transplanted with both gene-modified and unmanipulated hematopoietic progenitor cells obtained from the patient by apheresis. Transfected cells were successfully engrafted in all four infused patients by day 11, and there were no unexpected infusion-related toxicities. Persistent vector expression in multiple cell lineages was observed at low levels for up to 24 months, as was expression of the introduced small interfering RNA and ribozyme.

Gene marking in peripheral blood after HSC transplantation

- Ethical requirement to provide standard of care- unmodified HSC infused 1 day after gene marked HSC
- Possibly/likely reduced engraftment of gene-modified HSC?

HIV CAR T Cells and Gene Modified T Cell Longevity in vivo

CD4-zeta Chimeric Antigen Receptor

Longitudinal Analysis of CD4 ζ CAR

15 year monitoring for delayed adverse events required by FDA (2006 Guidance).

Patients from 3 studies in HIV gene therapy utilizing a retroviral vector expressing the CD4- ζ CAR in CD4/8 T cells were evaluated annually for persistence of genetically modified T cells.

Combined Data of all 3 Studies

Scholler et al. Science Trans. Med. May 2, 2012

CD4- ζ R Ν	IA Prese	nt in Pa	tient	
PBMCs		% Copies		
	Annual	CD4ζ	RNA	
Study/Patient	Follow up	in PBMCs	Detection	
Mitsuyasu /H	2nd	0.122	+++	
Mitsuyasu / H	5th	0.148	+++	
Mitsuyasu / H	8th	0.218	+++	
Mitsuyasu / A	9th	0.021	+	Engr
Mitsuyasu / D	9th	0.008	+	for R
Mitsuyasu / K	8th	0.014	UD	
Deeks / B	6th	0.103	+++	
Deeks / B	8th	0.455	+++	
Deeks / B	9th	0.301	+++	
Deeks / L	5th	0.173	+++	
Deeks / L	9th	0.037	+++	
Deeks / L	10th	0.034	+++	Leve
Deeks / P	5th	0.145	+++	N/A
Deeks / P	10th	0.040	+++	
Deeks / C	3rd	0.272	+++	+++
Deeks / C	9th	0.226	+++	+
Deeks / N	7th	0.260	+++	UD
Deeks / J	7th	0.189	+++	
June/Levine / 27	8th	0.046	+++	
June/Levine / 35	5th	0.141	+++	
June/Levine / 36	5th	0.199	+++	
Control / 209	N/A	UD	UD	
Control / 207	N/A	UD	UD	
Control / 207	N/A	UD	UD	

Engraftment Limit for RNA detection

Levels of CD4-ζ RNA Detected N/A = not applicable +++ = reliable levels + = at limits of detection UD = no RNA Detected

SCID-ADA Transduced T cells

T Cells or their progeny, especially when conferred with a survival advantage, can persist in vivo for years

Patient Safety Years of Genetically Modified T cells University of Pennsylvania

Trial	Engineered T Cell	# Patients Infused	Safety (Patient-Years)	# Patients Alive (as of last date enrolled in study/LTFU)
Sangamo ZFN (HIV)	Ad5/35 zinc finger nuclease	12	74.4	12
CD4z CAR (HIV) includes CG trials	Retroviral CAR	44	783.6	44
SB-728mR CCR5 ZFN	CCR5 ZFN	11	10.9	11
MAZ-Takara (HIV)	Retroviral MazF	10	22.7	10
VirxSys VRX496 (HIV)	Lentiviral antisense HIVenv	20	204.1	20
Adaptimmune (HIV)	Lentiviral gag TCR	2	10.8	2
Adaptimmune Myeloma and Sarcoma	Lentiviral NY-ESO1 TCR	21	100.8	21
Penn/Novartis CART19/CTL019	Lentiviral 19:BBz CAR	311	467.3	214
EGFR	Lentiviral CART-EGFR	10	8.5	3
UPCC19214 CART-MESO-19	CART-MESO-19	3	3.2	2
UPCC31213	CART-MESO	15	10.2	2
UPCC31415	CART22	3	1.5	1
UPCC14415	CART-BCMA	14	10.9	10
Total		476	1709	352

Why Is This Man Smiling?

 The HIV+ "Berlin Patient" Dx w/AML received HSC transplant from an allogeneic, HLA matched, CCR5 delta-32 homozygous donor. He is HIV-free w/o HAART (Hutter G., NEJM, 2009)

Keys to Intervention by Gene Therapy in HIV

• Sufficient number of gene modified cells