Development of Gene and Cell Therapies

American Society of Gene and Cell Therapy
Annual Scientific Meeting
Clinical Trials Training Course
May 9, 2017

Larissa Lapteva, MD, MHS, MBA
Associate Director
DCEPT/OTAT/CBER/FDA
• I do not have any conflicts of interest
Regulatory Approach to Product Development

- Sufficient pre-marketing development program through the Investigational New Drug Application mechanism
 - expedited development programs and other incentives are available for diseases with unmet needs
 - product quality and consistency in manufacturing
- Substantial evidence of effectiveness
- Acceptable safety for the population with the disease or condition
- The available data demonstrate that the product’s benefits outweigh its risks
 - at the time of approval, and
 - throughout the product’s lifecycle
Examples of Cell Therapy Products

• Stem cell-derived products (adult, perinatal, fetal, embryonic, induced pluripotent)
• Somatic (functionally differentiated) cell-derived products
• Immune cell-derived products
• Genetically-modified cellular products
Examples of Gene Therapy Products

• Viral vector-based products
 • Replication-deficient
 • Replication-competent oncolytic
• Bacterial vector-based products
• Plasmid DNA products
• Genome-editing products
Considerations for Product Development

- Prolonged biological activity and the need for long-term follow-up
- Challenges with assessing the precise mechanism of action, evaluating product potency, and dosing
- Preclinical data may not always inform of all salient product’s effects
- Cellular kinetics depends on the in situ microenvironment, disease state, concomitant medications, and intrinsic target cell distribution
- Immunogenicity
- Invasive procedures for product delivery; product-device biocompatibility
- Off target effects:
 - Unpredictable differentiation and proliferation (ectopic tissue and tumor formation)
 - Host responses to product administration (local and systemic)
- Vulnerable populations
 - Pediatric, rare diseases, the end of disease severity spectrum
Considerations for Product Development: Gene Therapies

- Vector persistence and biodistribution
- Expressed transgene persistence
- Viral replication, shedding, and excretion
- Insertional mutagenesis
- Genomic integration; germline transmission
- Immune responses to the vector or the expressed product
Risk-Based Approach to Product Quality

• **Product characterization**
 - Critical Quality Attributes
 - Safety of the source cellular material (donor screening and testing); Master Cell Banks; safety of the final product and intermediates
 - Product specifications and specific assays for sterility, identity, purity, and potency
 - Defining and limiting cellular phenotypes in manufacturing; evaluating potency for all active ingredients
 - Safety and product compatibility with the delivery system

• **Process development, validation, and reassessment**
 - Critical Process Parameters
 - Current Good Manufacturing Practices
 - Qualification program for all ancillary materials and reagents
 - Container closure systems
 - Refinement and scale-up during the product’s lifecycle
Risk-Based Approach to Product Quality, Cont.

- **Product characterization for gene therapy products**
 - Derivation of the vector along with intermediate vector constructs (if any)
 - Analysis of the vector’s annotated genetic sequence with relevant restriction sites and regulatory elements
 - Maintenance of Master Banks and Working Banks for cells and vectors

- **Process characterization**
 - Process qualifications with engineering manufacturing runs
 - In-process acceptance criteria and action limits
 - Terminal sterilization vs. qualified, validated aseptic manufacturing process
 - Lot release specifications
Considerations for Development of Patient-Specific Autologous or Allogeneic Cell Therapy Products

• High lot-to-lot variability reflective of patient-to-patient variability in cell behavior and quality
• Potential impact of disease state on cell function
• Timing for cell collection and “window” for treatment
• Challenges with demonstration of manufacturing consistency and product comparability with manufacturing changes
• It is important to distinguish the variability of the source material from the variability introduced by the manufacturing process to ensure consistent product output
Preclinical Evaluation: Scientific Basis and Safety for Conducting Clinical Investigations

- Objectives: Establish biological plausibility and feasibility of administration, identify safe and pharmacologically active doses, assess safety profile, and recommend potential parameters for clinical monitoring

- Preclinical evaluation may include animal testing, in-vitro testing, and in-silico testing, depending on product’s characteristics
 - The 3Rs principle: the FDA fosters development of test methods and protocols that Reduce, Refine, and Replace animal use
Preclinical Evaluation: Considerations for Successful Product Development

- **Models of animals:** healthy and disease-related
 - Scientific justification for model selection
 - Comparative physiology and target tissue type and size helps with extrapolation to clinical dose levels
- **Product’s kinetic profile:** vector biodistribution and cell fate
- **Route of administration:** as close as possible to the clinical scenario
 - Timing and rate of delivery, anatomical location, activity of the product in local micro-environment, cell viability
- **Standard toxicology assessments:** mortality, observations on treatment, body weights, gross and histopathology, and other endpoints, as recommended in the current guidances
- **Informative design:** randomized group assignments, appropriate controls, masked assessments, adequate study duration, and the assumption of product’s persistence
Considerations for Product Dosing (examples)

Dose response curves may be flat or non-linear
Determination of dosing is aided by batteries of assays

- **Cell therapies** are often mixtures of different cell types
 - The total number of cells delivered, cell viability
 - The total number of a specific cell type per all cells delivered

- For **gene therapies**, transfection/transduction efficiency is an important characteristic of the dose
 - Number of transduced cells
 - Mean number of copies of vector sequences integrated per cell

- **Clinical trials** should consider:
 - Pre-specified range of exposure; appropriate dose measurements
 - Characterization of safety profile of the feasible doses
 - Scientific rationale for justification of dose escalation or de-escalation
Tumorigenicity: Risk Reduction Through All Stages of Development

• Product
 • Minimizing residual or undifferentiated cell types in the final product
 • Ensuring genetic stability of the cell lines and in vitro assessment for cytogenetic abnormalities; pre-specified cell passage level limit
 • Quality control testing for the product and process and appropriate master bank testing for source material

• Preclinical
 • Assessment in studies of sufficient duration
 • Appropriate animal models susceptible to tumor formation

• Clinical
 • Recognition of background tumor formation in disease populations
 • Long-term follow-up (where feasible in pre-marketing), clinical studies and registries, ensure interpretability
Considerations for Clinical Program Design: Efficacy

- Feasibility of product manufacturing and clinical administration should be addressed early on
 - For patient-specific products, trial analyses should account for both treatment effects and manufacture failures
- Large clinical trials with diverse populations vs. smaller clinical trials with specific patient populations
 - Early studies in patients rather than healthy volunteers
- Disease state, timing of treatment, and the immune system functionality
- In addition to clinical outcome measures, trial endpoints may need to include biological and immunological endpoints to further evaluate product’s persistence and biological activity
- A well-designed natural history study may be a good alternative to concurrent control group(s) in rapidly progressing, serious, and rare conditions
Considerations for Clinical Program Design: Safety

- Dose-limiting toxicity may not be readily observable early in development
 - Duration of follow-up to be tailored to individual products
- Monitoring for immediate reactions to cellular and vector delivery
- Careful product administration
 - Staggering regimen; stopping criteria
- Monitoring for occurrence of graft-versus-host disease, autoimmune phenomena, cytokine release syndrome, engraftment syndrome, and other immune reactions
- Evaluation of product persistence and long-term effects
 - Appropriate measurements in body fluids and tissues, where possible
 - Clinical monitoring and imaging studies for ectopic growth
 - Recommendations for conditions of safe use and additional information gathering (long-term follow-up up to 15 years for gene therapies and life-time follow-up for xenotransplants)
Additional Considerations for Program Design

• Pediatric patients
 • Where possible, clinical programs should obtain safety and tolerability data in adults first
 • 21 CFR 50 requires determination of the level of risk and the prospect of direct benefit for treatments presenting greater than minimal risk

• Disease severity spectrum
 • Remaining functional reserve and anticipated risks

• Rare diseases
 • A well-designed and informative study with interpretable data permits enrollment of fewer patients
Goals of Product Development

• Evidence of effectiveness
 • Two adequate and well-controlled trials
 • One informative and interpretable trial may be sufficient with supportive data

• Quality and consistency in manufacturing

• Effective and safe dosing range to ensure accurate recommendations in the labeling

• Well-described risks with clinical recommendations for their prevention, monitoring, and treatment

• Safe and effective delivery by appropriately trained healthcare personnel

• Any associated companion diagnostics, devices, etc. co-developed in time and become available with the product
Conclusions

• Optimized product development for a cell or gene therapy requires understanding of clinical issues at the product design stage and product design issues at the clinical investigation stage

• Anticipated product risks are expected to be defined during the pre-marketing development with remaining uncertainties to be addressed in each subsequent stage of investigation and, where appropriate, in the post-approval stage

• Favorable benefit/risk product profile is best supported by the demonstrated benefit and by the monitorable, preventable, and treatable risks that are acceptable to patients
Selected Guidance Documents

- Recommendations for Microbial Vectors Used for Gene Therapy, 09/2016
- Design and Analysis of Shedding Studies for Virus or Bacteria-Based Gene Therapy and Oncolytic Products, 8/2015
- Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products, 6/2015
- Target Product Profile, 3/2007
- Preclinical Assessment of Investigational Cellular and Gene Therapy Products, 11/2013
- Preparation of IDEs and INDs for Products Intended to Repair or Replace Knee Cartilage, 12/2011
- Potency Tests for Cellular and Gene Therapy Products, 1/2011
- Cellular Therapy for Cardiac Disease, 10/2010
- Considerations for Allogeneic Pancreatic Islet Cell Products, 9/2009
- Expedited Programs for Serious Conditions – Drugs and Biologics, 5/2014

Public Access to CBER

• **CBER website:**

• **CBER Toll Free Number**
 – 1-800-835-4709

• **Consumer Affairs Branch (CAB)**
 – Email: ocod@fda.hhs.gov
 – Phone: 240-402-7800

• **Manufacturers Assistance and Technical Training Branch (MATTB)**
 – Email: industry.biologics@fda.gov

• Follow us on Twitter: https://www.twitter.com/fdacber
OTAT Contact Information

Regulatory Questions:

• Contact the Regulatory Management Staff in OTAT: at CBEROCTGTRMS@fda.hhs.gov or Lori.Tull@fda.hhs.gov or by calling (301) 827-6536

• Learn Webinar Series:
 http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm