Gene Editing

Matthew Porteus, MD, PhD
Professor of Pediatrics (Stem Cell Transplantation)
Stanford University
Gene editing

• Removes, disrupts, or corrects faulty elements of DNA within a gene
• An enzyme cuts DNA at one location
• The specific DNA cut allows one to change the sequence with high precision
Two Basic Genome Editing Strategies for Sickle Cell Disease

• Re-activate protective fetal hemoglobin
 • Multiple academic labs around the world
 • Two open clinical trials run by different biotechnology companies

• Directly correct variant that causes the disease (“gene correction”)
 • Several different programs moving towards clinical trials in next 6-18 months.
Example of Approach 1: Increasing Protective Fetal Hemoglobin

• Hematopoietic and progenitor cells are removed from the body
• CRISPR/Cas9 technology is used to edit a portion of the BCL11A gene
• The edited cells are then infused back into the patient as part of an autologous stem cell transplant
• The edited cells produce high levels of fetal hemoglobin (HbF) in red blood cells
Example of Approach 2: Direct Correction of the Sickle Cell Disease Gene

- Hematopoietic and progenitor cells are removed from the body
- CRISPR/Cas9 technology is used to correct the sickle cell disease gene
- The edited cells are then infused back into the patient as part of an autologous stem cell transplant
- The edited cells produce the non-sickling hemoglobin instead of the sickling hemoglobin
Preliminary Data

• Upregulation of Protective Fetal Hemoglobin
 • In pre-clinical studies achieve 40-60% expression of fetal hemoglobin
 • Higher than 20% likely provide benefit to patients
 • Patient enrolled in the United States (no data reported, too early to tell)

• Gene Correction
 • In pre-clinical studies, achieve 20-60% gene correction
 • Higher than 5-20% correction frequency that is predicted to change lives of patients
 • Moving towards clinical trials
Advancing knowledge, awareness, and education of gene and cell therapy