A New Approach: Gene Silencing

David Williams, MD
Senior Vice President and CSO, Boston Children’s Hospital
President, Dana-Farber / Boston Children’s Cancer and Blood Disorders Center

Leland Fikes Professor of Pediatrics, Harvard Medical School
Silencing the BCLA11A gene

- The BCL11A gene acts as an “off” switch to fetal hemoglobin production shortly after birth for most people.

- While most people then switch to making healthy adult hemoglobin, people with sickle cell disease transition to making a mutated, sickled hemoglobin.

- Silencing the BCL11A gene simultaneously increases fetal hemoglobin, which does not sickle and has potent anti-sickling characteristics, and directly reduces the creation of adult, sickling hemoglobin.
**Ex vivo lentiviral vector approach**

- Blood stem cells are removed from the body
- A lentiviral vector delivers instruction to the cell to silence or “knock down” the BCL11A gene product
- These genetically-modified cells are returned to the body
BCL-002: Reversal of Sickle Cell Phenotype

- No pain
- No respiratory or neurologic events
- No anemia
- No transfusions since engraftment

Pre-GT | 6 months post-GT
Update

• Adult cohort complete
  • Kinetics of engraftment very similar in all patients
  • Kinetics of fetal hemoglobin production and reduced sickle hemoglobin production very similar in all patients
  • No adverse events attributed to gene therapy product
• DSMB interim review complete
• Age 12-18 cohort opened and enrollment already completed
• Age 2-12 now opening, many patients interested
Many interested families

• 51 families with children under age 12
• 23 adolescents
• 49 adults

• Worldwide interest:
  • U.S. (Rhode Island, Massachusetts, Minnesota, Texas, Indiana, Florida, Louisiana, New York, New Hampshire...)
  • International (UK, Canada, Nigeria, Kenya, Argentina...)

Advancing knowledge, awareness, and education of gene and cell therapy
Advancing knowledge, awareness, and education of gene and cell therapy