AMERICAN SOCIETY of GENE & CELL THERAPY

Committed to Research, Education and Patient Care
Presenter Disclosure:

Paul Wuh-Liang Hwu

Nothing to disclose
Acknowledgement of Funding

Travel was generously supported by:

- NIAID
- NHLBI
- NCRR
- NICHD
- NIDDK
- NTUH

Presented research was supported by:
Taiwan AADC Association
NTU Research Center for Medical Excellence
Taiwan Foundation for Rare Disorders
Gene Therapy for Aromatic L-Amino Acid Decarboxylase Deficiency

Wuh-Liang Hwu
National Taiwan University Hospital,
Taipei, Taiwan
AADC deficiency

AADC: aromatic L-aminoacid decarboxylase
5HIAA: 5-hydroxyindoleacetic acid
MHGP: 3-methoxy-4-hydroxyphenyglycol
VMA: vanilmandelic acid

3-O-MD: 3-O methylldopa
HVA: homovanillic acid
Clinical presentation of AADC deficiency

- Hypotonia (dopamine)
 - Axial hypotonia, limb hypertonia, decreased spontaneous movement, failure to make motor acquisitions
- Oculogyric crisis (dopamine)
 - Eye deviation upward, convergent, or to one side.
 - Prolonged (hours)
 - Opisthotonus with tonic or dystonic posturing of limbs
- Dystonia (dopamine)
- Autonomic system (catecholamines, serotonin)
 - Excessive diaphoresis, temperature instability, nasal congestion, Ptosis, miosis
- Mood and sleep (serotonin)
- Cognitive functions?
Clinical presentation of AADC deficiency

- Hypotonia and oculogyric crisis
AADC gene therapy

AAV2-hAADC

Bothering DOPA to AADC

AADC

5-OH-tryptophan

Serotonin

SN Tyrosine

DOPA

DA

Uptake

Signals

Putamen
Results

• Surgery
 – No intracerebral hemorrhage

• Cautions
 – Difficult stereotaxic surgery on small children
 – Poor pretreatment patient condition
 – Difficult posttreatment care

• Benefit
 – Initiate motor development
 – Increase in signal in FDOPA PET
 – Elevation of CSF neurotransmitter conc.
Case 1: 3m post gene transfer
Case 1: 7 months
Case 1: 19 months standing
Motor development after gene transfer

![Graph showing motor development over time for four patients.](image)
6-[^{18}F]fluorodopa PET – Patient 4

Before

6 months after
Current status of AADC gene therapy

• Compassionate use (Phase 0)
 – GMP production
 – 6 patients (2-6 yr) with critical condition
 – Good result

• Phase I trial (IND)
 – Depends on the good result from CU
 – GMP production required
 – Toxicity test required
 – Scheduled second season 2012
Conclusion

- Advantage of this gene therapy
 - Clear disease pathogenesis
 - Safety and efficacy of AAV2-hAADC has been demonstrated

- Difficulties – an ultra rare disorder
 - Lack of funding
 - Difficult regulation
 - Low interest to the Journals

- Driving forces
 - Many patients in Taiwan
 - A fatal disease with no treatment
 - Gene therapy is very effective
Acknowledgement

• NTUH
 – Sheng-Hong Tseng
 – Kai-Yuan Tzen
 – Ni-Chung Lee
 – Yin-Hsiu Chien
 – Chun-Hwei Tai
 – Ruey-Meei Wu

• Jichi Medical University, Japan
 – Shin-ichi Muramatsu

• University of Florida
 – Richard O. Snyder
 – Barry Byrne

• Other contributors
 – Toshiharu Nagatsu
 – Tetsuo Ito
 – Joyce Francis
 – Bin-Ru She
 – The patients and their families
 – The physicians and nurses involved in this study